|
In mathematics, a Demazure module, introduced by , is a submodule of a finite-dimensional representation generated by an extremal weight space under the action of a Borel subalgebra. The Demazure character formula, introduced by , gives the characters of Demazure modules, and is a generalization of the Weyl character formula. The dimension of a Demazure module is a polynomial in the highest weight, called a Demazure polynomial. ==Demazure modules== Suppose that ''g'' is a complex semisimple Lie algebra, with a Borel subalgebra ''b'' containing a Cartan subalgebra ''h''. An irreducible finite-dimensional representation ''V'' of ''g'' splits as a sum of eigenspaces of ''h'', and the highest weight space is 1-dimensional and is an eigenspace of ''b''. The Weyl group ''W'' acts on the weights of ''V'', and the conjugates ''w''λ of the highest weight vector λ under this action are the extremal weights, whose weight spaces are all 1-dimensional. A Demazure module is the ''b''-submodule of ''V'' generated by the weight space of an extremal vector ''w''λ, so the Demazure submodules of ''V'' are parametrized by the Weyl group ''W''. There are two extreme cases: if ''w'' is trivial the Demazure module is just 1-dimensional, and if ''w'' is the element of maximal length of ''W'' then the Demazure module is the whole of the irreducible representation ''V''. Demazure modules can be defined in a similar way for highest weight representations of Kac–Moody algebras, except that one now has 2 cases as one can consider the submodules generated by either the Borel subalgebra ''b'' or its opposite subalgebra. In the finite-dimensional these are exchanged by the longest element of the Weyl group, but this is no longer the case in infinite dimensions as there is no longest element. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Demazure module」の詳細全文を読む スポンサード リンク
|